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For a fixed algorithm, function class and sample size,
generating random samples−→ distribution of test errors

� Focusing on the mean of the error distribution?
⊲ can be misleading: learner only hasonesample

� Statistical Learning Theory: tail of the distribution
⊲ finding bounds which hold with high probability

over random samples of sizem

� Compare to a statistical test – at99%confidence level
⊲ chances of the conclusion not being true are less than1%

� PAC: probably approximately correct
Use a ‘confidence parameter’δ: P

m[large error]≤ δ
δ is probability of being misled by the training set

� Hencehigh confidence: Pm[approximately correct]≥ 1− δ
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The Plan
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� Definitions and Notation: (John)
⊲ risk measures, generalization

� First generation SLT: (Omar)
⊲ worst-case uniform bounds
⊲ Vapnik-Chervonenkis characterization

� Second generation SLT: (John)
⊲ hypothesis-dependent complexity
⊲ SRM, Margin, PAC-Bayes framework

� Next generation SLT? (Omar)
⊲ Stability. Deep NN’s. Future directions



What to expect
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We will...

⊲ Focus on aims/methods/ key ideas
⊲ Outline some proofs
⊲ Hitchhiker’s guide!

We will not...

⊲ Detailed proofs/ full literature (apologies!)
⊲ Complete history/ other learning paradigms
⊲ Encyclopaedic coverage of SLT
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Learning algorithm A : Zm → H

• Z = X × Y
X = set of inputs
Y = set of labels

• H = hypothesis class

= set ofpredictors
(e.g. classifiers)

Training set(akasample): S m = ((X1,Y1), . . . , (Xm,Ym))
a finite sequence ofinput-label examples.

SLT assumptions:

• A data-generating distributionP overZ.

• Learner doesn’t knowP, only sees the training set.

• The training setexamples arei.i.d. from P: S m ∼ Pm

⊲ these can be relaxed (but beyond the scope of this tutorial)
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Use the available sample to:

(1) learn a predictor
(2) certify the predictor’s performance

Learning a predictor:

• algorithm driven by some learning principle

• informed by prior knowledge resulting in inductive bias

Certifying performance:

• what happens beyond the training set

• generalization bounds

Actually these two goals interact with each other!
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A loss functionℓ(h(X),Y) is used to measure the discrepancy
between a predicted labelh(X) and the true labelY.

Empirical risk: Rin(h) = 1
m

∑m
i=1 ℓ(h(Xi),Yi)

(in-sample)

Theoretical risk: Rout(h) = E
[

ℓ(h(X),Y)
]

(out-of-sample)

Examples:

• ℓ(h(X),Y) = 1[h(X) , Y] : 0-1 loss(classification)
• ℓ(h(X),Y) = (Y − h(X))2 : square loss(regression)
• ℓ(h(X),Y) = (1− Yh(X))+ : hinge loss
• ℓ(h(X),Y) = − log(h(X)) : log loss(density estimation)
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If classifierh does well on the in-sample(X,Y) pairs...

...will it still do well on out-of-sample pairs?

Generalization gap: ∆(h) = Rout(h) − Rin(h)

Upper bounds: w.h.p. ∆(h) ≤ ǫ(m, δ)

◮ Rout(h) ≤ Rin(h) + ǫ(m, δ)

Lower bounds: w.h.p. ∆(h) ≥ ǫ̃(m, δ)

Flavours:
� distribution-free
� algorithm-free

� distribution-dependent
� algorithm-dependent



First generation SLT
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For one fixed (non data-dependent)h:

E[Rin(h)] = E
[

1
m

∑m
i=1 ℓ(h(Xi),Yi)

]

= Rout(h)

◮ P
m[∆(h) > ǫ] = Pm[

E[Rin(h)] − Rin(h) > ǫ
]

deviation ineq.
◮ ℓ(h(Xi),Yi) are independent r.v.’s
◮ If 0 ≤ ℓ(h(X),Y) ≤ 1, usingHoeffding’s inequality:

P
m[

∆(h) > ǫ
]

≤ exp
{

−2mǫ2
}

= δ

◮ Givenδ ∈ (0,1), equate RHS toδ, solve equation forǫ, get

P
m
[

∆(h) >
√

(1/2m) log(1/δ)
]

≤ δ

◮ with probability≥ 1− δ, Rout(h) ≤ Rin(h) +
√

1
2m log

(

1
δ

)
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Algorithm A : Zm → H Function classH with |H| < ∞

Aim for a uniform bound: Pm[

∀ f ∈ H, ∆( f ) ≤ ǫ
]

≥ 1− δ

Basic tool: P
m(E1 or E2 or · · · ) ≤ Pm(E1) + Pm(E2) + · · ·

known as theunion bound(akacountable sub-additivity)

P
m
[

∃ f ∈ H, ∆( f ) > ǫ
]

≤
∑

f∈H P
m
[

∆( f ) > ǫ
]

≤ |H|exp
{

−2mǫ2
}

= δ

w.p. ≥ 1− δ, ∀h ∈ H, Rout(h) ≤ Rin(h) +
√

1
2m log

(

|H|
δ

)
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Algorithm A : Zm → H Function classH with |H| ≥ |N|

Double sample trick: a second ‘ghost sample’
� true error↔ empirical error on the ‘ghost sample’
� hence reduce to a finite number of behaviours
� make union bound, but bad events grouped together

Symmetrization:
� bound the probability of good performance on one sample

but bad performance on the other sample
� swapping examples between actual and ghost sample

Growth functionof classH:
� GH(m) = largest number of dichotomies (±1 labels)

generated by the classH on anym points.

VC dimensionof classH:
� VC(H) = largestm such thatGH(m) = 2m
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Vapnik & Chervonenkis: For anym, for anyδ ∈ (0,1),

w.p. ≥ 1− δ, ∀h ∈ H, ∆(h) ≤
√

8
m log

(

4GH(2m)
δ

)

growth function

� Bounding the growth function→ Sauer’s Lemma
� If d = VC(H) finite, thenGH(m) ≤

∑d
k=0

(

m
k

)

for all m
impliesGH(m) ≤ (em/d)d (polynomial inm)

ForH with d = VC(H) finite, for anym, for anyδ ∈ (0,1),

w.p. ≥ 1− δ, ∀h ∈ H, ∆(h) ≤
√

8d
m log

(2em
d

)

+ 8
m log

(4
δ

)
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VC upper bound:

� Note that the bound is:
the same for all functions in the class (uniform overH)
and the same for all distributions (uniform overP)

VC lower bound:

� VC dimensioncharacterises learnability in PAC setting:
there exist distributionssuch that with large probability
overm random examples, the gap between the risk and the
best possible risk achievable over the class is at least

√

d
m
.
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� The theory is certainly valid and tight – lower and upper
bounds match!

� VC bounds motivate Empirical Risk Minimization (ERM),
as apply to a hypothesis space, not hypothesis-dependent

� Practical algorithms often do not search a fixed hypothesis
space but regularise to trade complexity with empirical
error, e.g.k-NN or SVMs or DNNs

� Mismatchbetween theory and practice

� Let’s illustrate this with SVMs...



SVM with Gaussian kernel
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� VC dimension−→ infinite
� but observed performance is often excellent
� VC bounds aren’t able to explain this
� lower bounds appear to contradict the observations
� How to resolve this apparent contradiction?

Coming up...

� large margin⊲ distribution may not be worst-case
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Theory

nice and complete

right but wrong

Practical usefulness

not so much



Second generation SLT
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Recap and what’s coming
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We saw...

⊲ SLT bounds the tail of the error distribution
⊲ giving high confidence bounds on generalization
⊲ VC gave uniform bounds over a set of classifiers
⊲ and worst-case over data-generating distributions
⊲ VC characterizes learnability (for a fixed class)

Coming up...

⊲ exploiting non worst-case distributions
⊲ bounds that depend on the chosen function
⊲ new proof techniques
⊲ approaches for deep learning and future directions
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First step towards non-uniform learnability.

H =
⋃

k∈NHk (countable union), eachdk = VC(Hk) finite.

Use a weighting scheme:wk weight of classHk,
∑

k wk ≤ 1.

For eachk, Pm[

∃ f ∈ Hk, ∆( f ) > ǫk
]

≤ wkδ, then union bound:

Hence,w.p.≥ 1− δ, ∀k ∈ N, ∀h ∈ Hk, ∆(h) ≤ ǫk

Comments:
� First attempt to introduce hypothesis-dependence

(i.e. complexity depends on the chosen function)

� The bound leads to abound-minimizing algorithm:

k(h) := min{k : h ∈ Hk}, return arg min
h∈H

{

Rin(h) + ǫk(h)

}
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� SRM detects ‘right’ complexity for the particular problem,
but must define the hierarchy a priori

� need to have more nuanced ways to detect how benign a
particular distribution is

� SVM uses the margin: appears to detect ‘benign’
distribution in the sense that data unlikely to be near
decision boundary→ easier to classify

� Audibert & Tsybakov: minimax asymptotic rates for the
error for class of distributions with reduced margin density

� Marchand and S-T showed how sparsity can also be an
indicator of a benign learning problem

� All examples of luckiness framework that shows how SRM
can be made data-dependent
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� Maximising the margin frequently makes it possible to
obtain good generalization despite high VC dimension

� The lower bound implies that SVMs must be taking
advantage of a benign distribution, since we know that in
the worst case generalization will be bad.

� Hence, we require a theory that can give bounds that are
sensitive to serendipitous distributions, with the marginan
indication of such ‘luckiness’.

� One intuition: if we use real-valued function classes, the
margin will give an indication of the accuracy with which
we need to approximate the functions
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We will give an introduction to three proof techniques

� First is motivated by approximation accuracy idea:
⊲ Covering Numbers

� Second again uses real value functions but reduces to how
well the class can align with random labels:
⊲ Rademacher Complexity

� Finally, we introduce an approach inspired by Bayesian
inference that maintains distributions over the functions:
⊲ PAC-Bayes Analysis
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� As with VC bound use the double-sample trick to reduce
the problem to a finite set of points (actual & ghost sample)

� find a set of functions that cover the performances of the
function class on that set of points, up to the accuracy of the
margin

� In the cover there is a function close to the learned function
and because of the margin it will have similar performance
on train and test, so can apply symmetrisation

� Apply the union bound over the cover

� Effective complexity is the log of the covering numbers

� This can be bounded by a generalization of the VC
dimension, known as the fat-shattering dimension
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Starts from considering the uniform (over the class) bound on the gap:

P
m[

∀h ∈ H, ∆(h) ≤ ǫ
]

= Pm[

sup
h∈H
∆(h) ≤ ǫ

]

Original sample:S = (Z1, . . . ,Zm), ∆(h) = Rout(h) − Rin(h, S )

Ghost sample: S ′ = (Z′1, . . . ,Z
′
m), Rout(h) = Em[

Rin(h, S ′)
]

E
m
[

sup
h∈H
∆(h)

]

≤ E2m















sup
h∈H

1
m

m
∑

i=1

[

ℓ(h,Z′i ) − ℓ(h,Zi)
]















=E2m
Eσ















sup
h∈H

1
m

m
∑

i=1

σi
[

ℓ(h,Z′i ) − ℓ(h,Zi)
]















≤ 2Em
Eσ















sup
h∈H

1
m

m
∑

i=1

σi ℓ(h,Zi)















symmetrization
σi’s i.i.d. symmetric{±1}-valued

Rademacher r.v.’s

⊲ Rademacher complexity of a class
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Empirical
Rademacher complexity:

R(H, S m) = Eσ















sup
h∈H

1
m

m
∑

i=1

σi ℓ(h(Xi),Yi)















Rademacher complexity: R(H) = Em[R(H, S m)]

� Symmetrization ⊲ Em
[

sup
h∈H
∆(h)

]

≤ 2R(H)

� McDiarmid’s ineq. ⊲ sup
h∈H
∆(h) ≤ Em

[

sup
h∈H
∆(h)

]

+

√

1
2m

log

(

1
δ

)

(w.p. ≥ 1− δ)

� McDiarmid’s ineq. ⊲ R(H) ≤ R(H, S m) +

√

1
2m

log

(

1
δ

)

(w.p. ≥ 1− δ)

For anym, for anyδ ∈ (0,1),

w.p. ≥ 1− δ, ∀h ∈ H, ∆(h) ≤ 2R(H, S m) + 3
√

1
2m log

(2
δ

)
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� Let F(κ, B) be the class of real-valued functions in a feature
space defined by kernelκ with 2-norm of the weight vector
w bounded byB

R(F(κ, B), S m) =
B
m

√

√

m
∑

i=1

κ(xi, xi)

� Hence, control complexity by regularizing with the 2-norm,
while keeping outputs at±1: gives SVM optimisation with
hinge loss to take real valued to classification

� Rademacher complexity controlled as hinge loss is a
Lipschitz function

� putting pieces together gives bound that motivates the SVM
algorithm with slack variablesξi and marginγ = 1/‖w‖
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� Upper bound on the generalization error:

1
mγ

m
∑

i=1

ξi +
4

mγ

√

√

m
∑

i=1

κ(xi, xi) + 3

√

log(2/δ)
2m

� For the Gaussian kernel this reduces to

1
mγ

m
∑

i=1

ξi +
4
√

mγ
+ 3

√

log(2/δ)
2m
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This gives a plug-and-play that we can use to derive bounds
based on Rademacher Complexity for other kernel-based
(2-norm regularised) algorithms, e.g.

� kernel PCA
� kernel CCA
� one-class SVM
� multiple kernel learning
� regression

Approach can also be used for 1-norm regularised methods as
Rademacher complexity is not changed by taking the convex
hull of a set of functions, e.g. LASSO and boosting
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� Before data, fix a distributionQ0 ∈ M1(H) ⊲ ‘prior’
� Based on data, learn a distributionQ ∈ M1(H) ⊲ ‘posterior’
� Predictions:
• drawh ∼ Q and predict with the chosenh.
• each prediction with a fresh random draw.

Therisk measuresRin(h) andRout(h) areextended by averaging:

Rin(Q) ≡
∫

H
Rin(h) dQ(h) Rout(Q) ≡

∫

H
Rout(h) dQ(h)

Typical PAC-Bayes bound:
Fix Q0. For any sample sizem, for anyδ ∈ (0,1), w.p. ≥ 1− δ,

∀Q KL
(

Rin(Q)‖Rout(Q)
)

≤
KL(Q‖Q0) + log

(m+1
δ

)

m
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Wm = ASVM(S m), Ŵm = Wm/‖Wm‖

For anym, for anyδ ∈ (0,1),

w.p. ≥ 1− δ, KL
(

Rin(Qµ)‖Rout(Qµ)
)

≤
1
2µ

2 + log
(m+1
δ

)

m

Gaussian randomization:

• Q0 = N(0, I)

• Qµ = N(µŴm, I)
• KL(Qµ‖Q0) = 1

2µ
2

Rin(Qµ) = Em[F̃(µγ(x, y))] whereF̃(t) = 1− 1√
2π

∫ t

−∞ e−x2/2dx

SVM generalization error≤ 2 min
µ

Rout(Qµ)



Results
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Classifier
SVM ηPrior SVM

Problem 2FCV 10FCV PAC PrPAC PrPAC τ-PrPAC

digits Bound – – 0.175 0.107 0.050 0.047
CE 0.007 0.007 0.007 0.014 0.010 0.009

waveform Bound – – 0.203 0.185 0.178 0.176
CE 0.090 0.086 0.084 0.088 0.087 0.086

pima Bound – – 0.424 0.420 0.428 0.416
CE 0.244 0.245 0.229 0.229 0.233 0.233

ringnorm Bound – – 0.203 0.110 0.053 0.050
CE 0.016 0.016 0.018 0.018 0.016 0.016

spam Bound – – 0.254 0.198 0.186 0.178
CE 0.066 0.063 0.067 0.077 0.070 0.072
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� Prior
• PAC-Bayes bounds: bounds hold even if prior incorrect
• Bayesian: inference must assume prior is correct

� Posterior
• PAC-Bayes bounds: bound holds for all posteriors
• Bayesian: posterior computed by Bayesian inference

� Data distribution
• PAC-Bayes bounds: can be used to define prior, hence

no need to be known explicitly: see below
• Bayesian: input effectively excluded from the analysis:

randomness in the noise model generating the output
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2nd generation practical algorithms

known heuristics proof techniques

refined

tighter bounds



Next generation SLT

NeurIPS 2018 Slide 41/ 52



Performance of deep NNs

Why SLT

Overview

Notation

First generation

Second generation

Next generation

NeurIPS 2018 Slide 42/ 52

� Deep learning has thrown down a challenge to SLT: very
good performance with extremely complex hypothesis
classes

� Recall that we can think of the margin as capturing an
accuracy with which we need to estimate the weights

� If we have a deep network solution with a wide basin of
good performance we can take a similar approach using
PAC-Bayes with a broad posterior around the solution

� Dziugaite and Roy have derived useful bounds in this way

� There have also been suggestions that stability of SGD is
important in obtaining good generalization

� We present stability approach combining with PAC-Bayes
and argue this results in a new learning principle linked to
recent analysis of information stored in weights
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Uniform hypothesis sensitivityβ at sample sizem:

‖A(z1:m) − A(z′1:m)‖ ≤ β
∑m

i=1 1[zi , z′i]

(z1, . . . , zm) (z′1, . . . , z
′
m)

� A(z1:m) ∈ H normed space
� wm = A(z1:m) ‘weight vector’

� Lipschitz
� smoothness

Uniform loss sensitivityβ at sample sizem:

|ℓ(A(z1:m), z) − ℓ(A(z′1:m), z)| ≤ β
∑m

i=1 1[zi , z′i]

� worst-case
� data-insensitive

� distribution-insensitive
� Open: data-dependent?
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If A has sensitivityβ at sample sizem, then for anyδ ∈ (0,1),

w.p. ≥ 1− δ, Rout(h) ≤ Rin(h) + ǫ(β,m, δ)

(e.g. Bousquet & Elisseeff)

� the intuition is that if individual examples do not affect the
loss of an algorithm then it will be concentrated

� can be applied to kernel methods whereβ is related to the
regularisation constant, but bounds are quite weak

� question: algorithm output is highly concentrated
=⇒ stronger results?
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� The idea of using a data distribution defined prior was
pioneered by Catoni who looked at these distributions:

� Q0 andQ are Gibbs-Boltzmann distributions

Q0(h) :=
1
Z′

e−γ risk(h) Q(h) :=
1
Z

e−γ
ˆriskS (h)

� These distributions are hard to work with since we cannot
apply the bound to a single weight vector, but the bounds
can be very tight:

KL+(Q̂S (γ)||QD(γ)) ≤ 1
m





















γ
√

m

√

ln
8
√

m
δ
+
γ2

4m
+ ln

4
√

m
δ





















as it appears we can chooseγ small even for complex
classes.
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If A has uniform hypothesis stabilityβ at sample sizen, then
for anyδ ∈ (0,1), w.p. ≥ 1− 2δ,

KL
(

Rin(Q)‖Rout(Q)
)

≤
nβ2

2σ2

(

1+
√

1
2 log

(1
δ

)

)2

+ log
( n+1
δ

)

n

Gaussian randomization

• Q0 = N(E[Wn], σ
2I)

• Q = N(Wn, σ
2I)

• KL(Q‖Q0) =
1

2σ2
‖Wn−E[Wn]‖2

Main proof components:

� w.p. ≥ 1− δ, KL
(

Rin(Q)‖Rout(Q)
)

≤ KL(Q‖Q0)+log
(

n+1
δ

)

n

� w.p. ≥ 1− δ, ‖Wn − E[Wn]‖ ≤
√

n β
(

1+
√

1
2 log

(1
δ

)

)
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� Achille and Soatto studied the amount of information stored
in the weights of deep networks

� Overfitting is related to information being stored in the
weights that encodes the particular training set, as opposed
to the data generating distribution

� This corresponds to reducing the concentration of the
distribution of weight vectors output by the algorithm

� They argue that the Information Bottleneck criterion can
control this information: hence could potentially lead to a
tighter PAC-Bayes bound

� potential for algorithms that optimize the bound
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SLT

hyper-lift

sometime soon
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Thank you!
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